Answer:
Option B
Explanation:
Let $\alpha,\beta$ and $\gamma$ be the angles made by the line segment OP with X-axis, Y-axis and Z-axis , respectively
Given: $\alpha=\frac{\pi}{4}$ and $\beta=\frac{\pi}{3} $
We know that $\cos^{2}\alpha+\cos^{2}\beta+\cos^{2}\gamma=1 $
$\therefore$ $\cos^{2}\frac{\pi}{4}+\cos^{2}\frac{\pi}{3}+\cos^{2}\gamma=1 $
$\Rightarrow \left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\cos^{2}\gamma=1$
$\Rightarrow \frac{1}{2}+\frac{1}{4}+\cos^{2}\gamma=1$
$\Rightarrow \cos^{2}\gamma=\frac{1}{4}$
$\Rightarrow \cos^{}\gamma=\frac{1}{\sqrt{2}}$
$\therefore$ $\gamma=\frac{\pi}{4}$
Hence , direction cosines are $\cos\alpha,\cos\beta,\cos\gamma$
i.e, $\frac{1}{\sqrt{2}},\frac{1}{2},\frac{1}{\sqrt{2}}$